PRISM

Benchmark
Model:nand v.1 (DTMC)
Parameter(s)N = 40, K = 4
Property:reliable (prob-reach)
Invocation (specific)
./fix-syntax ./prism --javamaxmem 11g nand.prism nand.props --property reliable -const N=40,K=4 -sparse -bgs
Select best engine and backwards Gauss-Seidel as solution method, as the model is acyclic
Execution
Walltime:15.467649698257446s
Return code:0
Relative Error:6.501386768651067e-15
Log
PRISM
=====

Version: 4.4.dev
Date: Mon Dec 10 20:33:20 CET 2018
Hostname: qcomp2019
Memory limits: cudd=1g, java(heap)=1g
Command line: prism --javamaxmem 11g nand.prism nand.props --property reliable -const 'N=40,K=4' -sparse -bgs

Parsing model file "nand.prism"...

Parsing properties file "nand.props"...

1 property:
(1) "reliable": P=? [ F s=4&z/N<0.1 ]

Type:        DTMC
Modules:     multiplex 
Variables:   u c s z zx zy x y 

---------------------------------------------------------------------

Model checking: "reliable": P=? [ F s=4&z/N<0.1 ]
Model constants: N=40,K=4

Building model...
Model constants: N=40,K=4

Computing reachable states...

Reachability (BFS): 1442 iterations in 4.12 seconds (average 0.002854, setup 0.00)

Time for model construction: 4.292 seconds.

Type:        DTMC
States:      3999522 (1 initial)
Transitions: 6288542

Transition matrix: 49073 nodes (493 terminal), 6288542 minterms, vars: 33r/33c

Prob0: 1442 iterations in 4.06 seconds (average 0.002818, setup 0.00)

Prob1: 1297 iterations in 3.79 seconds (average 0.002923, setup 0.00)

yes = 141, no = 375263, maybe = 3624118

Computing remaining probabilities...
Engine: Sparse

Building sparse matrix... [n=3999522, nnz=5699366, compact] [25.6 MB]
Creating vector for diagonals... [dist=1, compact] [7.6 MB]
Creating vector for RHS... [dist=2, compact] [7.6 MB]
Allocating iteration vector... [30.5 MB]
TOTAL: [71.3 MB]

Starting iterations...

Backwards Gauss-Seidel: 2 iterations in 2.32 seconds (average 0.052500, setup 2.21)

Value in the initial state: 0.6186822208151961

Time for model checking: 10.407 seconds.

Result: 0.6186822208151961 (value in the initial state)


Overall running time: 15.244 seconds.