PRISM

Benchmark
Model:nand v.1 (DTMC)
Parameter(s)N = 60, K = 4
Property:reliable (prob-reach)
Invocation (specific)
./fix-syntax ./prism --javamaxmem 11g nand.prism nand.props --property reliable -const N=60,K=4 -sparse -bgs
Select best engine and backwards Gauss-Seidel as solution method, as the model is acyclic
Execution
Walltime:43.06910824775696s
Return code:0
Relative Error:9.757289190159982e-15
Log
PRISM
=====

Version: 4.4.dev
Date: Mon Dec 10 20:43:02 CET 2018
Hostname: qcomp2019
Memory limits: cudd=1g, java(heap)=1g
Command line: prism --javamaxmem 11g nand.prism nand.props --property reliable -const 'N=60,K=4' -sparse -bgs

Parsing model file "nand.prism"...

Parsing properties file "nand.props"...

1 property:
(1) "reliable": P=? [ F s=4&z/N<0.1 ]

Type:        DTMC
Modules:     multiplex 
Variables:   u c s z zx zy x y 

---------------------------------------------------------------------

Model checking: "reliable": P=? [ F s=4&z/N<0.1 ]
Model constants: N=60,K=4

Building model...
Model constants: N=60,K=4

Computing reachable states...

Reachability (BFS): 2162 iterations in 11.81 seconds (average 0.005463, setup 0.00)

Time for model construction: 12.308 seconds.

Type:        DTMC
States:      18826082 (1 initial)
Transitions: 29772212

Transition matrix: 97452 nodes (1103 terminal), 29772212 minterms, vars: 33r/33c

Prob0: 2162 iterations in 10.68 seconds (average 0.004940, setup 0.00)

Prob1: 1945 iterations in 9.92 seconds (average 0.005101, setup 0.00)

yes = 547, no = 1757695, maybe = 17067840

Computing remaining probabilities...
Engine: Sparse

Building sparse matrix... [n=18826082, nnz=26994875] [326.9 MB]
Creating vector for diagonals... [dist=1, compact] [35.9 MB]
Creating vector for RHS... [dist=2, compact] [35.9 MB]
Allocating iteration vector... [143.6 MB]
TOTAL: [542.3 MB]

Starting iterations...

Backwards Gauss-Seidel: 2 iterations in 8.52 seconds (average 0.241000, setup 8.03)

Value in the initial state: 0.6867214589192238

Time for model checking: 29.983 seconds.

Result: 0.6867214589192238 (value in the initial state)


Overall running time: 42.846 seconds.