
Reimplementing and Evaluating
Static Fault Tree Analysis using BDDs

Daniel Basgöze

Software Modeling and Verification, RWTH Aachen University, Aachen, Germany

Fault Tree analysis (FTA) is a popular and established method to model and
assess risk in complex systems such as nuclear power plants or airplanes [10,11].
Traditional Static Fault Trees (SFT) represent a monotonic Boolean function that
models the overall failure state of a system depending on the failure states of its
components. The most common approach of analyzing them is to first translate
the fault tree into a binary decision diagram (BDD) and analyzing the BDD
instead [8,11]. We present a comparison of our implementation of BDD-based
FTA in the probabilistic model checker Storm [1,2,6] with other state-of-the-art
academic FTA tools Scram [7] and Xfta [9]. Furthermore, we provide an artifact
of the experimental evaluation of all three tools that includes patches, installation
and evaluation scripts, tool configurations, and fault tree models1.

The static fault tree analysis implementation in Storm is based on the
multi-core BDD library Sylvan [3] and was a result of our efforts to speed up
the analysis of dynamic fault trees (DFT) [4] in Storm-dft [13]. This was done
by reimplementing a modular analysis approach that can analyze some of the
static parts of a DFT with traditional BDD-based methods [5]. The resulting
SFT analysis implementation is fully fledged and supports calculating minimal
cut sets, unreliability, and importance measures.

We evaluated the performance of Storm-dft, Scram, and Xfta on 215
examples from 5 benchmark sets. Fig. 1(a) compares the runtimes of Storm-dft
against Scram and Xfta when computing the failure probability for a single time
point. In comparison Fig. 1(b) compares the runtimes when computing the failure
probabilities for 10 000 time points. Our evaluation showed that Storm-dft is
competitive with the other SFT analysis tools. Further our implementation is
significantly faster when calculating the unreliability for multiple time points as
it exploits vectorization.

One problem we encountered during our evaluation is that the current version
of Scram found in its official Github repository is not maintained anymore and
does not build without some changes to its source code. We therefore provide the
necessary patch in our artifact. While Scram and Xfta both state support for
the XML-based Open-PSA Model Exchange format [12] some differences remain.
For example Scram uses the keyword ‘system-mission-time’ where Xfta uses
‘mission-time’. Storm-dft meanwhile uses the Galileo file format2. To deal with
this we developed and published a translation script in our artifact that can
convert between these different formats.
1 https://doi.org/10.5281/zenodo.5834213
2 https://dftbenchmarks.utwente.nl/galileo.html

https://doi.org/10.5281/zenodo.5834213
https://dftbenchmarks.utwente.nl/galileo.html


2 D. Basgöze

0
.0

0
1

0
.0

1

0
.1

1 1
0

1
0
0

0.001

0.01

0.1

1

10

100

O
oR

OoR

Scram

S
t
o
r
m
-d

ft

Aralia

Sprinkler

Railway

Industry

Random

0
.0

0
1

0
.0

1

0
.1

1 1
0

1
0
0

0.001

0.01

0.1

1

10

100
O

oR

OoR

Xfta

S
t
o
r
m
-d

ft

Aralia

Sprinkler

Railway

Industry

Random

(a) Calculation for one time point

0
.0

0
1

0
.0

1

0
.1

1 1
0

1
0
0

0.001

0.01

0.1

1

10

100

O
oR

OoR

Scram

S
t
o
r
m
-d

ft

Aralia

Sprinkler

Railway

Industry

Random

0
.0

0
1

0
.0

1

0
.1

1 1
0

1
0
0

0.001

0.01

0.1

1

10

100

O
oR

OoR

Xfta

S
t
o
r
m
-d

ft
Aralia

Sprinkler

Railway

Industry

Random

(b) Calculating for 10 000 time points

Fig. 1. Runtime comparisons for computation of unreliability. OoR indicates out of
resources and represents either a timeout (5 min) or memory out (30 GB).

References

1. Basgöze, D.: Dynamic fault tree analysis using binary decision diagrams (2020),
Bachelor thesis, RWTH Aachen University

2. Basgöze, D., Volk, M., Katoen, J.P., Khan, S., Stoelinga, M.: Bdds strike back:
Efficient analysis of static and dynamic fault trees (2022)

3. van Dijk, T.: Sylvan: multi-core decision diagrams. Ph.D. thesis, University of
Twente, The Netherlands (2016)

4. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In:
RAMS. pp. 286–293 (1990)

5. Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic
fault trees. In: RAMS. pp. 57–63. IEEE (1997)



Reimplementing and Evaluating Static Fault Tree Analysis using BDDs 3

6. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transf. pp. 1–22 (2021)

7. Rakhimov, O.: Scram probabilistic risk analysis tool (2018). https://doi.org/10.
5281/zenodo.1146337

8. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3),
203–211 (1993)

9. Rauzy, A.: Probabilistic safety analysis with XFTA. AltaRica Association (2020)
10. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art in

modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)
11. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:

Fault Tree Handbook with Aerospace Applications. NASA Washington, DC (2002)
12. Steven, E., Antoine, R.: Open-PSA Model Exchange Format. The Open-PSA

Initiative (2007)
13. Volk, M., Junges, S., Katoen, J.: Fast dynamic fault tree analysis by model checking

techniques. IEEE Trans. Ind. Informatics 14(1), 370–379 (2018)

https://doi.org/10.5281/zenodo.1146337
https://doi.org/10.5281/zenodo.1146337
https://doi.org/10.5281/zenodo.1146337
https://doi.org/10.5281/zenodo.1146337

	Reimplementing and Evaluating Static Fault Tree Analysis using BDDs

