
Reproducible Cluster(less) Speedup Analysis

Maximilian Heisinger1 and Martina Seidl1

Johannes Kepler University Linz, Austria,
{maximilian.heisinger, martina.seidl}@jku.at

1 Introduction and Context

When developing new libraries or improving on old implementations, the aim
generally lies on outperforming the solutions realized in the past. This improve-
ment of performance may be captured in multiple ways, be it increasing number
of solved instances, decreasing wall-clock run-time, or similar measures. In this
work we share our improved benchmarking setup to cover as many scenarios as
possible with one combined scripting framework, called the Simsala Script Col-
lection, which could also be described as self-hosted and primarily CLI-focused
StarExec. We use this setup in our distributed Cube-and-Conquer SAT and
QBF solver research project Paracooba and in our upcoming generic solver
interfacing library QuAPI. We hope that the developed methods and tools can
be helpful to other groups as-well, both during development of new solvers and
when organizing competitions. In the workshop, we will interactively go through
some usage scenarios. A public release of our scripts is available at:

http://simsala.pages.sai.jku.at/ (website with tutorials)
https://gitlab.sai.jku.at/simsala/simsala (repository)

2 Executing and Benchmarking Eval-Tools

In the following, we define an eval-tool to be a general benchmarking program
that can be run on sets of input files, printing one row of tabular data for each
one. Inputs may be generated or taken from a benchmark library. The tool may
directly execute different configurations and generate a combined output, or be
exclusive to one configuration.

Scripted Eval-Tool Execution In order to realize such an eval-tool, an execution
environment is needed. Multiple possibilities exist, e.g. slurm [8] or local batch
jobs using e.g. GNU parallel [6]. To create an extendable benchmarking pipeline,
our submit.pl script generates tasks, which then execute the eval-tool with dif-
ferent input-files on either a slurm cluster or on regular (unmanaged) worksta-
tions using GNU parallel. As a regular eval-tool enforces no resource limits, an
additional wrapper for their enforcement is recommended, e.g. BenchExec [1]
or RunLim [2]. For memory and wall-clock, we use a statically-linked RunLim.
submit.pl itself may be compared to BenchExec, although supporting multi-
ple execution backends.

http://simsala.pages.sai.jku.at/
https://gitlab.sai.jku.at/simsala/simsala


2 M. Heisinger, M. Seidl

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2

so
lv

e
ti

m
e

[s
]

program1_depth10_inputset1
program1_depth20_inputset1
program1_depth30_inputset1
program3_depth10_inputset1
program3_depth20_inputset1
program3_depth30_inputset1

./data.db: OverAll

Fig. 1. Quick cactus plot of example data.

Extracting Structured Results As the generated logs share the same format, they
can be analyzed using the same tools. This makes them more stable and incen-
tivizes long-term investments. We provide a script to quickly extract wall-clock
run-times and other statistics from the logs, inserting them into an SQLite3 [4]
database. Such a database then contains all the different configurations of the
used eval-tool, which can all be compared with per-file granularity. This database
is the crucial improvement compared to the old setup based purely on ad-hoc
log parsing, as the structured data can now be analyzed and compared directly.

3 Analysing Results

To get an overview over the data we use SQLitebrowser [5], which also provides
convenient in-built plotting. More specialized comparisons, e.g. cactus plots as
in Figure 1, are already provided as a ready-made script. Custom-built plots are
then based on SQL queries written by the user, e.g. to calculate and visualize
speedups between different configurations. To store a growing library of such
queries, we use Org Mode [3] for its support of inline (and parameterized) SQL
statements. The resulting files may then also be exported and shared as PDF or
HTML documents, both providing results their source queries.

Combining Gnuplot with SQLite and Publishing In order to publish the results,
we use Gnuplot [7] for its support of standalone LATEX documents for plotting.
By prepending < to the data file argument of a plot command in Gnuplot, it
is interpreted as an executable to be run instead of a file to be read. When
embedding SQLite3 queries into these commands, Gnuplot gathers all required
data using these embedded queries. For this to work correctly, set datafile
separator ’|’ has to be included the plotting commands.

As the number of different configurations and plotting scripts grows, the
calls to Gnuplot themselves should be automated. For this we use a Makefile
with pattern targets to both generate the TEX and PDF files, with the matched
pattern (represented by the $(*) variable) being transformed into a Gnuplot



Reproducible Cluster(less) Speedup Analysis 3

argument. These plots can then be analyzed by themselves or directly included
into a publication. All the produced data is then checked into a repository, which
can then also be shared. Because every step of the pipeline is exchangeable and
all steps taken are documented in the checked-in scripts, replication studies can
work in the same setup and compare findings more easily.

Case Study We used our tools to track Paracooba & QuAPI step-by-step. Due
to its distributed and parallel nature, especially the first required extensive tests
and evaluation to understand the impact of changes and to monitor progress.

References

1. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. International Journal on Software Tools for Technology Transfer 21, 1–29
(2017)

2. Biere, A., Jussila, T.: RunLim (2022), http://fmv.jku.at/runlim/
3. Dominik, C., et al.: Org Mode (2022), https://orgmode.org
4. Hipp, R.D., et al.: SQLite (2022), https://www.sqlite.org/index.html
5. Kleusberg, M., et al.: DB Browser for SQLite (2022), https://sqlitebrowser.org
6. Tange, O.: Gnu parallel - the command-line power tool. ;login: The USENIX Mag-

azine 36(1), 42–47 (Feb 2011), http://www.gnu.org/s/parallel
7. Williams, T., Kelley, C., many others: Gnuplot 5.4: an interactive plotting program

(2022), http://gnuplot.sourceforge.net/
8. Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: Simple linux utility for resource

management. In: JSSPP (2003)

http://fmv.jku.at/runlim/
https://orgmode.org
https://www.sqlite.org/index.html
https://sqlitebrowser.org
http://www.gnu.org/s/parallel
http://gnuplot.sourceforge.net/

	Reproducible Cluster(less) Speedup Analysis

