
Security verification tools for Ethereum smart1

contracts: a reusability bonfire story ⋆
2

Tommaso Oss 1 and Carlos E. Budde 1,2
3

1 University of Trento, Trento, Italy4
2 Technical University of Denmark, Lyngby, Denmark5

Abstract We report on the assessment of 39 free open-source software6

tools to detect security vulnerabilities in Ethereum smart contracts. The7

tools were inspected for usability following criteria akin to ACM badges.8

Results show a low degree of maturity in tool-repurposing: (a) most9

tools were too difficult or even infeasible to install; (b) most available10

tools were difficult to use, due to lack of documentation or continued11

support. Requiring self-contained functional artifacts for experimental12

reproduction of scientific contributions would solve these problems.13

1 Introduction14

Blockchains market size passed the $1k B cap in 2024, with future prognostics15

of equivalent growth [18, 7]. In Ethereum—top-3 in transactions-volume and16

market-cap since 2015 [6, 7]—blocks can contain smart contracts: Turing-complete17

programs mainly written in Solidity [4, 30]. Thus, security bugs in Solidity code18

are public and unfixable, which has caused a stream of cyberattacks (worth19

billions of dollars) that continues to this day [8]. Consequently, many security-20

enhancing tools have emerged, with most effort put on detecting vulnerabilities,21

i.e. true positives and detection sensitivity [5, 16, 3, 29, 21]. This has caused a22

bloating of (false) alarms, with false positive rates as high as 99.8% [32].23

The above poses practical questions regarding the usability of available se-24

curity tools for blockchain development. This has been a hot area of research25

in recent years [10, 22, 31, 15, 32, 19]. In this work we focus on the reusability26

aspects of these tools, as many of them are presented in academic (as opposed to27

industrial) environments, accompanying research as experimental reproduction.28

Related work. This work is based on [19]. We present here the correspond-29

ing studies regarding reproducibility and replication of research results, which30

determined the need for further research on Solidity security tools.31

http://orcid.org/0009-0005-2071-9551
http://orcid.org/0000-0001-8807-1548

2 Oss & Budde

Table 1: Criteria for selecting tools as eligible for use “off-the-shelf”
Level C1: availability C2: installation C3: usage input C4: usage output

1 ✓ Tool publicly
available, with
download link for
unrestricted use

✓ Simple setup
(⩽ 5 commands)
via provided in-
structions

✓ Usage commands
provided and well
explained, succeeds
on first try

✓ Output simple
and clear, under-
standable at first
glimpse

2 × Tool proposed,
but not public or
only upon contact
with authors

✓ Complex setup
(> 5 commands)
via provided in-
structions

✓ Usage commands
provided but details
missing, takes some
trial and error

✓ Output too verb-
ose or complex, but
results of analysis
are findable

3 × No tool: only
a theoretical ap-
proach or al-
gorithm is pro-
posed

✓ Many setup
processes proposed,
only some work

× Usage commands
not provided (or only
some examples, hard
to generalise)

× Output shows
errors, hard or im-
possible to obtain
results of analysis

4/5 × (4) Setup only
possible via ex-
ternal web search,
or (5) not possible

2 FOSS tools for Solidity security1

2.1 Evaluation criteria2

We reviewed 39 popular tools from online resources and surveys [24, 29], to3

select those expected to be accessible to the standard developer. We deem a4

tool usable off-the-shelf if it is publicly available and easy to setup, execute, and5

understand its output. We make our assessment systematic in Table 1, which6

defines four criteria divided in levels: a green cell marked ✓ indicates a criterion7

level eligible as off-the-shelf; red cells marked × indicate the opposite. Thus,8

eligible tools must have an availability level ⩽ 1, installation level ⩽ 3, and9

usage-input and usage-output levels ⩽ 2.10

Table 2: ACM badges in Table 1

ACM badge C1 C2 C3 C4

Available 1 ∗ ∗ ∗
Functional ≤ 2 ≤ 2 ≤ 2 ≤ 2
Reusable ≤ 2 1 1 1

These criteria are based on the usual11

artifact badging system of Computer Sci-12

ence conferences and journals. For refer-13

ence, Table 2 translates the criteria in14

Table 1 to the acm badging system [1].15

A similar connection could be established16

e.g. with EAPLS badges [2].17

2.2 Tools usability evaluation18

The 39 tools presented in Table 3 have been designed to analyse Solidity smart19

contracts in search for source- or bytecode vulnerabilities [24, 29]. To under-20

stand which are usable by third parties we apply a two-level filter: First, the21

criteria above is used to find tools eligible as usable off-the-shelf, that are ex-22

pected to survive a first usability test by interested users; Then, eligible tools23

⋆ This work was supported by the EU under NextGenerationEU projects Smartitude
D53D23008400006 (MUR PRIN 2022), and SERICS PE00000014 (MUR PNRR).

Security verification tools for Ethereum smart contracts 3

Table 3: Eligibility of tools as usable off-the-shelf by the criteria from Table 1
Vuln. detect. CriteriaTool urv ree td C1 C2 C3 C4 Elig.

AChecker 1 1 1 1 Yes
ConFuzzius ✓ ✓ ✓ 1 3 2 2 Yes
ContractFuzzer ✓ ✓ ✓ 1 5 - - No
ContractWard ✓ ✓ ✓ 2 - - - No
EasyFlow 1 5 - - No
Echidna 1 1 1 1 Yes
EtherSolve ✓ 1 1 1 2 Yes
Ethlint ✓ ✓ 1 1 2 1 Yes
eThor ✓ 1 1 2 3 No
ExGen ✓ 1 5 - - No
Gasper 2 - - - No
Halmos ? ? ? 1 1 3 - No
Harvey ✓ ✓ 1 5 - - No
Horstify ✓ ✓ ✓ 1 5 - - No
MadMax 1 5 - - No
Maian 1 5 - - No
Manticore ? ? ? 1 5 - - No
Medusa 1 1 2 1 Yes
Mythril ✓ ✓ ✓ 1 3 2 1 Yes

Vuln. detect. CriteriaTool urv ree td C1 C2 C3 C4 Elig.

Osiris ✓ ✓ ✓ 1 3 1 2 Yes
Oyente ✓ ✓ ✓ 1 3 1 1 Yes
ReGuard ✓ 2 - - - No
Remix ✓ ✓ ✓ 1 1 1 1 Yes
S-Gram ? ? ? 2 - - - No
Securify ✓ ✓ ✓ 1 4 1 1 No
Seraph ✓ 2 - - - No
Sereum ✓ 3 - - - No
sFuzz ✓ ✓ ✓ 1 2 3 - No
Slither ✓ ✓ ✓ 1 1 1 2 Yes
SmartCheck ✓ ✓ ✓ 1 1 1 1 Yes
SmartCopy ✓ ✓ ✓ 2 - - - No
SmartShield ✓ ✓ 2 - - - No
SoliDetector ✓ ✓ ✓ 2 - - - No
Solscan ✓ ✓ ✓ 1 1 1 1 Yes
Vandal ✓ ✓ 1 5 - - No
VeriSmart ? ? ? 1 5 - - No
Vultron ✓ ✓ 1 5 - - No
WANA ✓ ✓ ✓ 1 1 1 3 No
Zeus ✓ ✓ 1 5 - - No

undergo deeper case-by-case analyses to determine the degree to which they can1

reproduce results (functional level) and be repurposed (reusable level).2

Table 3 shows the results of the first filter. We highlight that our search for3

tools cannot be exhaustive given the fast pace of the field. In particular, many4

tools are deployed as proof-of-concept whose maintenance stops after a few years,5

e.g. Oyente—in fact, these are the majority of the tools in Table 3.6

From those 39 initial tools, 13 were assessed as usable off-the-shelf accord-7

ing to the criteria in Table 1. These tools were further inspected in [19] to8

determine their capability to analyse three types of security vulnerabilities in9

Solidity smart contracts: unused return value (urv), reentrancy (ree), and10

time-dependency (td). The capacity of a tool to spot such vulnerabilities is11

marked with ✓ in the corresponding column of Table 3. Those vulnerabilities12

were used as target in the second phase, to determine how well can each tool be13

used for reproduction and repurposing. Table 4 shows the aspects of those tests14

that are relevant for generic reproducibility of results and re-usability of code,15

e.g. to reproduce the results from the scientific articles that accompany the tool.16

3 Discussion: tools reusability17

From 39 tools tested, Table 3 shows that 13 are usable off-the-shelf. This means18

that 26 tools (2⁄3) require non-trivial effort to achieve a base-level reproduction19

of the results they were designed to create. In fact, we were unable to install 12 of20

them (ca. 1⁄3), and 9 (ca. 1⁄4) were not even available. This is discouraging, given21

that most tools accompany scientific articles whose empirical results they were22

designed to back: unavailable or uninstallable tools mean unverifiable results,23

against the spirit of scientific research. From the 13 tools that did work, 6 were24

4 Oss & Budde

Table 4: foss tools for Solidity security that are usable off-the-shelf
Tool Description Usability comments

Oyente
[17]

Symbolic execution. Parses
source- and byte-code.

Supports only up to solc 0.4.19 (very old
version of Solidity).

Mythril
[24]

Symbolic execution, smt solving,
taint analysis + severity rating.

Easy setup via Docker. Covers all versions of
Solidity (project maintained).

Osiris
[28]

Symbolic execution and taint
analysis (leverages Oyente).

Being based on Oyente it has the same prob-
lems as the latter.

Slither
[12]

Static checker and taint analysis,
via the SlithIR intermediate
representation.

Very easy installation and use, and vulner-
abilities match our interest set. Covers all
versions of Solidity (project maintained).

Smart
Check

[26]

Static checker via an XML-based
intermediate representation.

Deprecated since 2020, failing for Solidity
v0.6.0 and above, which reduces severely the
test set of smart contracts.

Remix
[25]

Static checker (Remix Analysis
is a plugin of Remix, the official
ide of Solidity).

Most functional tool found, offered via pack-
age managers and online. Covers all versions
of Solidity (project maintained).

Echidna
[14]

Fuzzer to detect violations in
assertions and custom properties.

Easy to install, does not require a complex
configuration or deployment of contracts to a
local blockchain.

ConFuzzius
[27]

Hybrid fuzzing (combines sym-
bolic execution and fuzzing).

Complex command to launch analysis (many
arguments). Returns errors for newer ver-
sions of Solidity.

Solscan
[23]

Static checker based on regular
expressions and contextual ana-
lysis.

For many contracts return errors like “An
error occurred while checking NAME_VULN. This
vulnerability class was NOT checked.”

Ethlint
[11]

Static checker with a set of core
rules for linting code.

Deprecated since 2019, failing for newer
Solidity versions. Does not cover Reentrancy.

Medusa
[9]

Go-ethereum-based fuzzer in-
spired by Echidna. Based on Oyente: has the same problems.

AChecker
[13]

Static data-flow and symbolic-
based analysis. Focus on Access Control Vulnerabilities.

EtherSolve
[21]

Static checker, based on symbolic
execution of the EVM operands.

Analyzes EVM bytecode, no Solidity source
code.

either unmaintained, or work only for very old versions of Solidity. This may1

entail functional-level reuse but not repurposing, as newer versions of Solidity2

contain many security patches and are thus rapidly adopted by the community.3

In the opposite side of the spectrum, three tools were particularly easy to4

setup and use: Mythril, Remix, and Slither. The former is a GitHub project for5

Solidity development, and the latter two are resp. the official Solidity ide (and6

its Solidity Analyser plugin), and one of its embedded security analysers.7

The general picture seems to be that (a) tools for code development are easy8

to setup, use, and repurpose, while (b) rigorous tools that back scientific research9

are abandoned soon after publication, becoming unusable. This picture is not10

new—to change it, research which relies on scientific experiments should require11

the submission of (publicly available) self-contained functional-level artifacts.12

Data availability statement. The data and logs used for these results, and13

experimentation in [19], are available at doi 10.6084/m9.figshare.26121655 [20].14

http://doi.org/10.6084/m9.figshare.26121655

Security verification tools for Ethereum smart contracts 5

References1

1. Artifact review and badging - current (2020), https://www.acm.org/publications/2

policies/artifact-review-and-badging-current3

2. EAPLS artifact badges - May 2021 (2021), https://eapls.org/pages/artifact_4

badges/5

3. Bartoletti, M., Lande, S., Murgia, M., Zunino, R.: Verifying liquidity of recursive6

Bitcoin contracts. Logical Methods in Computer Science 18(1) (2022). https://doi.7

org/10.46298/lmcs-18(1:22)20228

4. Buterin, V.: Ethereum: A next-generation smart contract and decentral-9

ized application platform (2014), https://ethereum.org/content/whitepaper/10

whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf11

5. Chang, J., Gao, B., Xiao, H., Sun, J., Cai, Y., Yang, Z.: sCompile: Critical Path12

Identification and Analysis for Smart Contracts, pp. 286–304 (10 2019). https:13

//doi.org/10.1007/978-3-030-32409-4_1814

6. Coinmarketcap (2024), https://coinmarketcap.com/15

7. crypto.com (2024), https://crypto.com/price16

8. Hacks to cryptocurrencies in 2024 (2024), https://www.immunebytes.com/blog/17

list-of-largest-crypto-hacks-in-2024/18

9. Crytic: Crytic/medusa: Parallelized, coverage-guided, mutational solidity smart19

contract fuzzing, powered by go-ethereum, https://github.com/crytic/medusa20

10. Dia, B., Ivaki, N., Laranjeiro, N.: An empirical evaluation of the effectiveness of21

smart contract verification tools. In: PRDC. pp. 17–26 (2021). https://doi.org/10.22

1109/PRDC53464.2021.0001323

11. duaraghav8: Duaraghav8/ethlint: (formerly solium) code quality & security linter24

for solidity, https://github.com/duaraghav8/Ethlint25

12. Feist, J., Grieco, G., Groce, A.: Slither: A static analysis framework for smart26

contracts. In: WETSEB (2019). https://doi.org/10.1109/WETSEB.2019.0000827

13. Ghaleb, A., Rubin, J., Pattabiraman, K.: Achecker: Statically detecting smart28

contract access control vulnerabilities. In: ICSE (2023). https://doi.org/10.1109/29

icse48619.2023.0008730

14. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: Effective, usable,31

and fast fuzzing for smart contracts. SIGSOFT (2020). https://doi.org/10.1145/32

3395363.340436633

15. Hu, T., Li, J., Storhaug, A., Li, B.: Why smart contracts reported as vulnerable34

were not exploited? TechRxiv (2023). https://doi.org/10.36227/techrxiv.21953189.35

v3, https://www.techrxiv.org/doi/full/10.36227/techrxiv.21953189.v136

16. Liu, Z., Luong, N.C., Wang, W., Niyato, D., Wang, P., Liang, Y.C., Kim, D.I.: A37

survey on Blockchain: A game theoretical perspective. IEEE Access 7, 47615–4764338

(2019). https://doi.org/10.1109/ACCESS.2019.290992439

17. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts40

smarter (2016). https://doi.org/10.1145/2976749.297830941

18. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)42

19. Oss, T., Budde, C.E.: Vulnerability anti-patterns in solidity: Increasing smart con-43

tracts security by reducing false alarms (2024). https://doi.org/10.48550/arXiv.44

2410.17204, https://arxiv.org/abs/2410.1720445

20. Oss, T., Budde, C.E.: Vulnerability anti-patterns in Solidity: Increasing smart46

contracts security by reducing false alarms (experimental reproduction pack-47

age) (2024). https://doi.org/10.6084/m9.figshare.26121655, https://figshare.com/48

articles/software/2612165549

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.46298/lmcs-18(1:22)2022
https://doi.org/10.46298/lmcs-18(1:22)2022
https://doi.org/10.46298/lmcs-18(1:22)2022
https://doi.org/10.46298/lmcs-18(1:22)2022
https://doi.org/10.46298/lmcs-18(1:22)2022
https://doi.org/10.46298/lmcs-18(1:22)2022
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-3-030-32409-4_18
https://coinmarketcap.com/
https://crypto.com/price
https://www.immunebytes.com/blog/list-of-largest-crypto-hacks-in-2024/
https://www.immunebytes.com/blog/list-of-largest-crypto-hacks-in-2024/
https://www.immunebytes.com/blog/list-of-largest-crypto-hacks-in-2024/
https://github.com/crytic/medusa
https://doi.org/10.1109/PRDC53464.2021.00013
https://doi.org/10.1109/PRDC53464.2021.00013
https://doi.org/10.1109/PRDC53464.2021.00013
https://doi.org/10.1109/PRDC53464.2021.00013
https://doi.org/10.1109/PRDC53464.2021.00013
https://doi.org/10.1109/PRDC53464.2021.00013
https://github.com/duaraghav8/Ethlint
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/icse48619.2023.00087
https://doi.org/10.1109/icse48619.2023.00087
https://doi.org/10.1109/icse48619.2023.00087
https://doi.org/10.1109/icse48619.2023.00087
https://doi.org/10.1109/icse48619.2023.00087
https://doi.org/10.1109/icse48619.2023.00087
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.36227/techrxiv.21953189.v3
https://doi.org/10.36227/techrxiv.21953189.v3
https://doi.org/10.36227/techrxiv.21953189.v3
https://doi.org/10.36227/techrxiv.21953189.v3
https://doi.org/10.36227/techrxiv.21953189.v3
https://doi.org/10.36227/techrxiv.21953189.v3
https://www.techrxiv.org/doi/full/10.36227/techrxiv.21953189.v1
https://doi.org/10.1109/ACCESS.2019.2909924
https://doi.org/10.1109/ACCESS.2019.2909924
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.48550/arXiv.2410.17204
https://doi.org/10.48550/arXiv.2410.17204
https://doi.org/10.48550/arXiv.2410.17204
https://doi.org/10.48550/arXiv.2410.17204
https://doi.org/10.48550/arXiv.2410.17204
https://doi.org/10.48550/arXiv.2410.17204
https://arxiv.org/abs/2410.17204
https://doi.org/10.6084/m9.figshare.26121655
https://doi.org/10.6084/m9.figshare.26121655
https://figshare.com/articles/software/26121655
https://figshare.com/articles/software/26121655
https://figshare.com/articles/software/26121655

6 Oss & Budde

21. Pasqua, M., Benini, A., Contro, F., Crosara, M., Dalla Preda, M., Ceccato, M.: En-1

hancing Ethereum Smart-contracts static analysis by computing a precise control-2

flow graph of Ethereum bytecode. Journal of Systems and Software 200, 1116533

(Jun 2023). https://doi.org/10.1016/j.jss.2023.1116534

22. Perez, D., Livshits, B.: Smart contract vulnerabilities: Vulnerable does not imply5

exploited. In: USENIX Security 21. pp. 1325–1341. USENIX Association (2021),6

https://www.usenix.org/conference/usenixsecurity21/presentation/perez7

23. Riczardo: Riczardo/solscan: Static solidity smart contracts scanner written in py-8

thon, https://github.com/riczardo/solscan9

24. Sharma, N., Sharma, S.: A survey of Mythril, a smart contract security analysis10

tool for EVM bytecode. Indian Journal of Natural Sciences 13(75) (2022)11

25. Team, R.: Remix project: Jump into web3 (2022), https://remix-project.org/12

26. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,13

Alexandrov, Y.: Smartcheck: Static analysis of ethereum smart contracts. In: WET-14

SEB. pp. 9–16. ACM (2018). https://doi.org/10.1145/3194113.319411515

27. Torres, C.F., Iannillo, A.K., Gervais, A., State, R.: Confuzzius: A data dependency-16

aware hybrid fuzzer for smart contracts. In: EuroS&P (2021). https://doi.org/17

10.1109/eurosp51992.2021.0001818

28. Torres, C.F., Schütte, J., State, R.: Osiris: Hunting for integer bugs in ethereum19

smart contracts. In: ACSAC (2018). https://doi.org/10.1145/3274694.327473720

29. Wang, Y., He, J., Zhu, N., Yi, Y., Zhang, Q., Song, H., Xue, R.: Security enhance-21

ment technologies for smart contracts in the blockchain: A survey. Trans Emerging22

Tel Tech 32(12), 29 (2021). https://doi.org/https://doi.org/10.1002/ett.434123

30. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.24

Ethereum project yellow paper 151, 1–32 (2014), https://ethereum.github.io/25

yellowpaper/paper.pdf26

31. Yu, R., Shu, J., Yan, D., Jia, X.: ReDetect: Reentrancy vulnerability detection in27

smart contracts with high accuracy. In: MSN. pp. 412–419 (2021). https://doi.org/28

10.1109/MSN53354.2021.0006929

32. Zheng, Z., Zhang, N., Su, J., Zhong, Z., Ye, M., Chen, J.: Turn the Rudder: A30

beacon of reentrancy detection for smart contracts on Ethereum. In: ICSE. pp.31

295–306. IEEE (2023). https://doi.org/10.1109/icse48619.2023.0003632

https://doi.org/10.1016/j.jss.2023.111653
https://doi.org/10.1016/j.jss.2023.111653
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://github.com/riczardo/solscan
https://remix-project.org/
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1109/eurosp51992.2021.00018
https://doi.org/10.1109/eurosp51992.2021.00018
https://doi.org/10.1109/eurosp51992.2021.00018
https://doi.org/10.1109/eurosp51992.2021.00018
https://doi.org/10.1109/eurosp51992.2021.00018
https://doi.org/10.1109/eurosp51992.2021.00018
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://doi.org/https://doi.org/10.1002/ett.4341
https://doi.org/https://doi.org/10.1002/ett.4341
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1109/MSN53354.2021.00069
https://doi.org/10.1109/MSN53354.2021.00069
https://doi.org/10.1109/MSN53354.2021.00069
https://doi.org/10.1109/MSN53354.2021.00069
https://doi.org/10.1109/MSN53354.2021.00069
https://doi.org/10.1109/MSN53354.2021.00069
https://doi.org/10.1109/icse48619.2023.00036
https://doi.org/10.1109/icse48619.2023.00036

	Security verification tools for Ethereum smart contracts: a reusability bonfire story

